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Abstract: A fuzzy neural network with memory connections for classification, and weight
connections for selection is introduced, thereby solving simultaneously two major problems in
pattern recognition: pattern classification and feature selection. The proposed network attempts
to select important features from among the originally given plausible features, while
maintaining the maximum recognition rate. The resulting value of weight connection represents
the degree of importance of feature. Moreover, the knowledge acquired by the network can be
described as a set of interpretable rules. The effectiveness of this new method has been validated
by using Anderson’s IRIS data. The results are these: first, the use of two features selected by
our method from among the original four in the proposed network results in virtualy identical
classifier performance; and secondly, the constructed classifier is described by three ssimple rules
that are of if-then form.

Key words. Pattern classification, Feature selection, Neural networks, Fuzzy logic, Linguistic
modeling.



1. I ntroduction

The recognition of patternsis the basis of all science. The aim is to discover a structure in
a system consisting of partia subsystems. Usually, something structured refers to the knowledge
of the state of a partia subsystem allowing us to easily guess the state of other parts of the same
whole system [1]. Techniques of pattern recognition can be generally described as deterministic,
statistical, or fuzzy in terms of their axiomatic bases. Traditional statistical classification methods
usually try to find a clear cut boundary to divide the pattern space into some classification
regions based on some pre-defined criterion, such as maximizing deviation-between-groups
divided by deviation-within-groups in the linear discriminant anaysis (LDA) [2]. As pointed in
[3], it is impossible to provide information of degree of uncertainty for a particular example for
LDA method since the error rate estimate is a statistical result of the entire sample set. In fact,
pattern recognition systems are systems that automatically identify objects based on ther
measured properties or features derived from these properties. With this viewpoint, a neura
network aso is a pattern recognition system. The existing neural networks that can be served as
classifiers may be grouped into four categories or their variations. Backpropagation (BP) [4],
Adaptive resonance theory (ART) [5], Radia basis functions (RBF) [6], and Probabilistic neural
networks (PNN) [8]. The first three are based on the deterministic axiomatics, and the last one is
based on the probabilistic-statistical axiomatics. Although these techniques have been proven to
be useful tools for pattern classification, the selection of features still is a challenge.

Since fuzzy set theory was suggested in 1965 [9], pattern recognition problems have been
intensively studied with fuzzy set [10]. The revolutionary significance of fuzzy set theory is that
it provides a mathematical method for describing intuitive knowledge of humans. In principle, a
mathematical model constructed in accordance with the classical theory must be interpreted in
natural language that could be understood intuitively. In contrast to classical methodology, a
fuzzy approach to modeling begins with a practical interpretation of concepts, and then generates
intuitive logical relations between concepts and constructs a model. A model constructed in
accordance with the fuzzy theory, therefore, is certainly interpretable. This methodology is called
‘empirical-semantic’ approach in [11], and this modeling method is called ‘linguistic’ modeling
in [12]. In recent years, a great deal of attention has been directed toward using the fusion of
fuzzy logic and neural networks to develop intelligent systems. This is because the two
technologies are strongly complementary to each other [13], [25]. Kéeller [14], for example,
incorporated fuzzy membership functions into the Perceptron learning algorithm. Archer [3] used
fuzzy set representation in neural network classification problems.

There are two main aspects to the effort of pattern recognition: pattern classification and
feature selection. Although many efforts have been made, we till do not have a complete and
satisfactory technique that can ssimultaneously deal with the above two problems. Bezdek [10]
proposed a measure of feature selection that works only for binary data. Kuncheva proposed a
new selection criterion in [15] using the concept of fuzzy rough sets. The latter overcome the
limitation of the former, however combinatorial explosion would become a major problem for
the cases in which there are more than a small number of features.

On the other hand, in order to solve the initialization problem and the normalization
problem with traditional learning vector quantization (LVQ) [7], a proportional learning vector
guantization (PLVQ) method was introduced in [16] and [17]. PLVQ is a generalized learning



vector quantization based on a fuzzy learning law (FLL). The second section of this article
provides an overview of the PLVQ agorithms, since the FLL is employed in the presented
network. The third section of this article describes our feature-weighted detector (FWD) network
that can fulfill both tasks of feature selection and pattern classification. The fourth section
includes two examples to verify the effectiveness of our FWD. For the sake of understanding, an
artificial data set is chosen in the first example. In the second example, the data set used is
Anderson’s IRIS data [18] that has been widely studied, allowing us to easily analyze and
compare our new technique with existing methods. Finaly, the fifth section contains a summary
and conclusions.

2. Proportional Learning Vector Quantization

As well known to dl, LVQ is a clustering algorithm for organizing a large of unlabeled
vectors into some given clusters. Although some good practical results have been obtained with
it, the method till suffers from an initialization problem [19] and normalization problem [17].

Based on Hebb's learning postulate, we assume that a desired learning rule for weights of
LVQ network should satisfy the following differential equation in continuous space:

dm.

d—t'=atui(x)(x- m;) (1a)
or, in discrete domains, we have
Dm, =a,u (X)(x- m,) (1b)

Where x denotes the input vector, m, denotes the memory vector of neuron i. u, (X) represents
the output value of neuron i when x ispresented ininput layer. a =a(l- t/T) isreferred to as
temporal learning rate in [19]. To find the mathematical expression of u (x) and its physica
meaning, consider the following loss function L as introduced in [20]-[21]
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Where u, ° u (x,) represents the degree to which input X, (X, = (X, Xcz,--1X,)) Matches
memory vector m; (m; =(m,;,m,,...,m,)). N is the number of data and c is the number of

clusters. The number of clusters here is equal to the number of output layer neurons. p is the
number of features, i.e., the number of input layer nodes. Using the method of the maximum-

fuzzy-entropy interpretation [21] and the normalization condition (é u, =1 for each k), the
i=1
following solution that minimizes the loss function L was found,
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Where s is anonzero number that can be chosen by user. Physically, s represents the fuzziness
in clustering. The smaler s is, the less the fuzziness is. There is no theoretical basis for



choosing an optimal s . A heurigtic guiddline is s :O.25\/E but not limited this. Note that
p represents the number of features here. u(x,) 1 [0, 1] is a fuzzy membership function. For a
given s , if the closer the input X, isto the memory m,, then the closer the output u(X,) isto
one; if the more the input x, is away from the memory m,, then the closer the output u(x,) is
to zero. From Eqgns.(1b) and (3), it is clear that each input updates all the weights (i.e., memory
connections { m;, }) in proportion as their output values. Eqn.(1) was called fuzzy learning law
(FLL) in [17], and u(x,) &so can be caled special learning rate corresponding with temporal
learning rate a,. When s ® 0, u(x,)={0, 1}, and thus the FLL reduces to competitive learning

law (CLL) [7]. The corresponding algorithm is referred to as proportiona learning vector
guantization (PLV Q). It has been shown that PLVQ avoids above two problems with LV Q.

The PLVQ Algorithm:
1). Fix 2£ c<<n, e>0, s >0 and the maximum number of iterations T.
2). Initidize { m, (0)} and learning rate a , 1 [0,]].
3.Fort=1,2,..,T,
Fork=1,2, .., N;
a Caculate{ u(x,)} using Eqn.(3).
b. Update { m, (t)} based on Eqgn.(1b), i.e.,
m; (t) =m; (t- 1) +a,(1- t/T)u,(x,)(x, - m;) 4
c. Next k.

4). Calculate E = éc 5 Imy () - my (t- D).
i=1 j=1

5). IF E <e or t>T stop; EL SE next t.

3. Feature-weighted Detector Networks

A feature-weighted detector (FWD) network is shown in Fig.1. The network consists of
input (1), matching (M), detecting (D) and output (O) layers (Fig.1(b)). Below, we give a
description of this network in detalil.

A. Input-output Relations

As shown in Fig.1(b), each M node can receive inputs from 2 sources:. the left-right input;
and right-left input from a node of D via a D-M adaptive connection. f() is a comparative
function, and the output is the difference of two input values. In detecting layer, there are two
types of node: forward and backward nodes. Each forward-node receives p inputs from p nodes
of M via pathways with weight connections { w; }. g() is Gaussian functions. Each backward-

node receives an input from a node of O via a backward-pathway with 1 connection fixed. b() is
a linear function. The functional of the output layer nodes is to give final classification score for
each input by normalizing output values of all D nodes. Each O node receives c+1 inputs. One of
them is called set signal. The other ¢ are from D via ¢ pathways with 1 connection fixed. Set
signal occurs before input is presented to the input layer. The role of the set signa is to provide
an equal opportunity to match the input for each of M nodes. Before input X, is coming, set

ggnd s =1, and thus v, =s =1 (i =12,...,c), since b() is a linear function. This guarantees



that each of neurons have an equal opportunity to match coming input. When input X, is coming,
outputs of node of neuron i are:

Yi = (X - my), j=12...,p (%)
14

4 = exp[- 2 a \Nijz(xkj - mji)z]’ (6)
28 i=1

u =12 /é z; . (7)

j=1

B. Learning Laws
In feature-weighted detector (FWD) networks, there are two types of learning when input
is presented to the input layer. One is memory learning. The other is weight learning. m,

represents the memory of neuron i. Memory learning is unsupervised, and the updating rule is
based on the FLL, i.e,

Dmi =ay (Xk)(xk - mi) (8)

Where x, represents the k-th input. On the other hand, in weight learning w; represents the

degree to which feature j contributes to the cluster i. In order to find the updating rule of { w; },
introduce the following error function

18 &

EZEaa(Ui(Xk)' di)2 (9)
k=1i=1

Where d. isthe desired value of output layer node i. Therefore, unlike memory learning, weight

learning is supervised. Based on the chain rule of differentia calculus, using Egns.(9), (7) and
(6) the following updating rule is obtained:

DWii :SE)—SZ(Ui (Xk)' di)(s' Zi)WijZi(ij - mji )2 (10)

Where s= é z and b>0islearning rate. For the sake of understanding, designing O£ w; £1
i=1
for eachi and j. w; =0 meansthat feature j has no “contribution” to cluster i; and w; =1 means

that feature | has the most contribution to cluster i. The agorithm can be stated as follows.

Feature-weighted Detector (FWD) Network Algorithm
1.Fixs >0,al[0,1], b>0, e >0, and the maximum number of iterations T.

2. Initidlize { m; (0) }, using ¢ samples randomly chosen from { x, } (k=1, 2,..., N), and w; (0) =1

for each i andj.

3.Fort=1, 2,..., T; For k=1, 2,..., N
a Caculate{ u, } using Eqn.(7).
b. Update { m, (t)} using Eqn.(8).



c. Update { w; (t) } using Eqgn.(10).
d. Next k.

4. Calculate E using Egn.(9).
5. IF E<e, or t>T stop, EL SE next t.

4. Applications

Two examples have been selected to illustrate the performance of our FWD network. The
purpose of selecting Example 1 isto help us to intuitively understand the physical meaning of the
method. From the result of Example 2, a potential application value of the presented method
should be shown.

Example 1--An artificial data set

For simplicity and intuition, we applied an artificial data set in which each pattern has
two plausible features as showed in Fig. 2 to FWD. From the distribution of the data, it is clear
that feature x, of this example has no contribution to the classification that follows the target
outputs of Table 1.

For Data Set of Fig. 2, we run the FWD with e =0.058, a =0.01, b=0.1and s =0.35. In
this example, the number of input layer nodes is two (i.e., p=2), and the number of output layer
nodes is two too (i.e.,, c=2). After 218 iterations, for each input the actual output is listed in the
right two columns of Table 1. This classification is fuzzy. The item “target output” of Table 1 list
the desired output when input k is presented to the input layer of the FWD. In the Table 1, u,
represents the output of neuron i. One neuron corresponds to one cluster here. Each pattern
should be assigned to either of two clusters in hard classification as shown in the item of “target
output” of Table 1. Obvioudly, if transforming the actual output listed in the right two columns of
Table 1 into 0-1 binary value, then the actua classification result of the FWD is identical with
the target in this example. Preferably, after learning, the resulting weight connections of the
FWD are w, =(0.10, 0.99), and w, =(0.15, 0.99). The contribution of feature X, to the cluster 1
is w,; =0.10; the contribution of feature X, to the cluster 2 is w,, =0.15; the contribution of
feature X, to the cluster 1 isthe same asthat to the cluster 2, i.e., w,, =w,, =0.99. It shows that
feature x, can be eliminated from the plausible features set selected initialy since the degree of
the importance of feature X, is much less than that of feature x,. Therefore, the presented FWD
enables the classification of pattern, and as well the selection of feature.

Example 2--An application to IRIS data

IRIS data [18] has been used in many papers to illustrate various clustering methods [22],
[23]. The motivation of selecting IRIS data here is since we have aready known the typical
performance of the existing methods applied to it and aso we can anayze feature by means of
the geometric structure as used in [10]. As well known, the IRIS data is a set of 150 four-

dimensional vectors. The plausible features selected initialy include sepal length (x), sepal
width (x,), petal length (x;) and petal width (x,). The 150 IRIS data used come from three



subspecies (clusters): sestosa, versicolor, and virginica. Each subspecies owns 50 samples
respectively. Anderson measured each feature of 150 plants (samples). For this data, using the
existing methods the typical number of mistakes is around 5 for supervised classifiers, and
around 15 for unsupervised classifiers [23].

Shown in Table 2 are results of two experiments. In the first experiment (Experiment 1),
al of four plausible features were used. The result is that: the number of mistakes, e =5; three
weight vectors, w, =(1.00, 1.00, 0.95, 1.00), w, =(0.00, 0.00, 1.00, 1.00), and w, =(0.00, 0.00,
0.82, 0.97). Based on this result, it has been clearly shown that, 1) feature x, and feature x, have
no contribution to cluster s, and cluster s;, and 2) the role of feature x, and feature x, in
cluster s, aso can bejointly played by feature x, and feature x,. For this, feature x, and feature
X, is supposed being meaningless. In order to prove that, in the second experiment (Experiment
2) only feature x, and feature X, were used. The results of the second experiment are

demonstrated in the right column of Table 2: the number of mistakes of the second experiment is
the same as that of the first experiment, i.e., e=5; three weight vectors are w, =(1.00, 1.00),

w, =(1.00, 1.00), w, =(0.82, 0.97). Obviously, the use of two feature x, and feature x, results
in virtually identical classifier performance. After feature selection, therefore, only feature X,
(petal length) and feature x, (petal width) are chosen.

For the sake of description, above selected two feature variables are renamed: X, now
represents petal length, and x, petal width. When a new input X =(x,,X,) is coming, using the
obtained {w;}, {m;}and given s , based on Eqns.(6)-(7), we have the following:

1 , 1
z, = expl- pwif(xl- m;)?]" exp[- Pwii(xz- m,)?]
=U, (%) U, (%) i =123 (11)
3
U, =U, 00U, () U s, (U, (%) i=123 (12)
j=1

Note that z, z, and z, are outputs that correspond respectively class sestosa (c,), class
versicolo (c, ), and class virginica (c,). Normalized u, (x) represents the degree to which input
X belongsto class ¢, (i =1,2,3). Further, we have

U, (%) =expl- 2(x, - 1.46)2], (13)
U,, (X)) =exp[- 2(x, - 0.25)°], (14)
U, (%) = expl- 2(x, - 4.29)%], (15)
U, (x,) =expl- 2(, - 1.36)2], (16)
U, (x) = exp[- 1.34(x, - 5.54)°], (17)
U, (x,) = exp[- L.88(x, - 2.0)]. (18)

The following three fuzzy rules, which correspond respectively to i =1, 2, 3in Egn.(11), thus are
constructed
R |F petal-length is nearly 1.46 and petal-width is nearly 0.25,
THEN it is sestosa.



R, |F petal-length is nearly 4.29 and petal-width is nearly 1.36,
THEN itisversicolor.
R, |F petal-length is nearly 5.54 and petal-width is nearly 2.00,
THEN itisvirginica.
Note that |F-part in above rules corresponds to the right side of Eqn.(11), and THEN-part the left
side of Egn.(11). Where, fuzzy numbers, nearly 1.46, nearly 0.25, nearly 4.29, nearly 1.36,
nearly 5.54, and nearly 2.00 are respectively represented by fuzzy setsA,, A,, A, A,, Ay,

and A, in Egn.(11). The numbers, 1.46, 0.25, 4.29, 1.36, 5.54, and 2.00 are derived from Egns.
(13)-(18).

5. Conclusions

A fuzzy neura network that enables the classification of patterns and the selection of
features is introduced. This algorithm includes two types of learning, i.e., unsupervised learning
for memory connection and supervised learning for weight connection. Examples that are
provided has demonstrated the ability of the feature-weighted detector (FWD) network to
classify pattern and select feature. Moreover, distinct to traditional neural networks for which it
is usualy difficult to interpret the obtained knowledge [24], [26], our FWD provides
interpretable rules that are of if-then form. These properties of the FWD suggest that it will be a
promising method for pattern recognition.
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Fig. 1. (a) A schematic diagram of the FWD network model. (b) Structure and interconnection of
neuron i.
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Fig. 2. Data set of Example 1.
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Table 1. Classification results of data set of Fig. 2.

Data Target Outputs Outputs of Neurons
Kk X u, U, u, u,
1 (.05,.12 1.00 0.00 0.989 0.011
2 (.10,.20 1.00 0.00 0.901 0.099
3 (.15,.05 1.00 0.00 0.998 0.002
4 (.20,.10 1.00 0.00 0.993 0.007
5 (.20,.20 1.00 0.00 0.899 0.101
6 (.70,.35 000 1.00 0.118 0.882
7 (.75, .45) 000 1.00 0.008 0.992
8 (.80,.40 000 1.00 0.033 0.967
9 (.85,.50 000 1.00 0.002 0.998
10 (.80, .10 1.00 0.00 0.993 0.007
11 (.83,.15 1.00 0.00 0.974 0.026
12 (.85,.19 1.00 0.00 0.925 0.075
13 (.90, .0 1.00 0.00 0.997 0.003
14 (.87,.13 1.00 0.00 0.985 0.015
15 (.10, .35 000 1.00 0.122 0.872
16 (.15, .45 000 1.00 0.008 0.992
17 (.20, .40 000 1.00 0.032 0.968
18 (.25, .50 000 1.00 0.002 0.998
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Table 2. Experimental results for IRIS data set. Features X, X,, X;, and X, represent sepal

length, sepal width, petal length, and petal width, respectively. e represents the number of
mistakes in classification, and { w, } represent weight vectors.

Experiment 1 Experiment 2
{Xl’ X2’ X3’ X4} {XS’ X4}

S 0.50 0.50
a 0.01 0.01
b 0.10 0.10
e 2.00 2.00
T 1000 1000
e 5 5
W, (2.00, 1.00, 0.95, 1.00) (2.00, 1.00)
w, (0.00, 0.00, 1.00, 1.00) (2.00, 1.00)
w (0.00, 0.00, 0.82, 0.97) (0.82, 0.97)

w
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