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Abstract: A fuzzy neural network with memory connections for classification, and weight 
connections for selection is introduced, thereby solving simultaneously two major problems in 
pattern recognition: pattern classification and feature selection. The proposed network attempts 
to select important features from among the originally given plausible features, while 
maintaining the maximum recognition rate. The resulting value of weight connection represents 
the degree of importance of feature. Moreover, the knowledge acquired by the network can be 
described as a set of interpretable rules. The effectiveness of this new method has been validated 
by using Anderson’s IRIS data. The results are these: first, the use of two features selected by 
our method from among the original four in the proposed network results in virtually identical 
classifier performance; and secondly, the constructed classifier is described by three simple rules 
that are of if-then form. 
Key words: Pattern classification, Feature selection, Neural networks, Fuzzy logic, Linguistic 
modeling. 
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1. Introduction 
The recognition of patterns is the basis of all science. The aim is to discover a structure in 

a system consisting of partial subsystems. Usually, something structured refers to the knowledge 
of the state of a partial subsystem allowing us to easily guess the state of other parts of the same 
whole system [1]. Techniques of pattern recognition can be generally described as deterministic, 
statistical, or fuzzy in terms of their axiomatic bases. Traditional statistical classification methods 
usually try to find a clear cut boundary to divide the pattern space into some classification 
regions based on some pre-defined criterion, such as maximizing deviation-between-groups 
divided by deviation-within-groups in the linear discriminant analysis (LDA) [2]. As pointed in 
[3], it is impossible to provide information of degree of uncertainty for a particular example for 
LDA method since the error rate estimate is a statistical result of the entire sample set. In fact, 
pattern recognition systems are systems that automatically identify objects based on their 
measured properties or features derived from these properties. With this viewpoint, a neural 
network also is a pattern recognition system. The existing neural networks that can be served as 
classifiers may be grouped into four categories or their variations: Backpropagation (BP) [4], 
Adaptive resonance theory (ART) [5], Radial basis functions (RBF) [6], and Probabilistic neural 
networks (PNN) [8]. The first three are based on the deterministic axiomatics, and the last one is 
based on the probabilistic-statistical axiomatics. Although these techniques have been proven to 
be useful tools for pattern classification, the selection of features still is a challenge. 

 Since fuzzy set theory was suggested in 1965 [9], pattern recognition problems have been 
intensively studied with fuzzy set [10]. The revolutionary significance of fuzzy set theory is that 
it provides a mathematical method for describing intuitive knowledge of humans. In principle, a 
mathematical model constructed in accordance with the classical theory must be interpreted in 
natural language that could be understood intuitively. In contrast to classical methodology, a 
fuzzy approach to modeling begins with a practical interpretation of concepts, and then generates 
intuitive logical relations between concepts and constructs a model. A model constructed in 
accordance with the fuzzy theory, therefore, is certainly interpretable. This methodology is called 
‘empirical-semantic’ approach in [11], and this modeling method is called ‘linguistic’ modeling 
in [12]. In recent years, a great deal of attention has been directed toward using the fusion of 
fuzzy logic and neural networks to develop intelligent systems. This is because the two 
technologies are strongly complementary to each other [13], [25]. Keller [14], for example, 
incorporated fuzzy membership functions into the Perceptron learning algorithm. Archer [3] used 
fuzzy set representation in neural network classification problems. 

 There are two main aspects to the effort of pattern recognition: pattern classification and 
feature selection. Although many efforts have been made, we still do not have a complete and 
satisfactory technique that can simultaneously deal with the above two problems. Bezdek [10] 
proposed a measure of feature selection that works only for binary data. Kuncheva proposed a 
new selection criterion in [15] using the concept of fuzzy rough sets. The latter overcome the 
limitation of the former, however combinatorial explosion would become a major problem for 
the cases in which there are more than a small number of features. 

 On the other hand, in order to solve the initialization problem and the normalization 
problem with traditional learning vector quantization (LVQ) [7], a proportional learning vector 
quantization (PLVQ) method was introduced in [16] and [17]. PLVQ is a generalized learning 
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vector quantization based on a fuzzy learning law (FLL). The second section of this article 
provides an overview of the PLVQ algorithms, since the FLL is employed in the presented 
network. The third section of this article describes our feature-weighted detector (FWD) network 
that can fulfill both tasks of feature selection and pattern classification. The fourth section 
includes two examples to verify the effectiveness of our FWD. For the sake of understanding, an 
artificial data set is chosen in the first example. In the second example, the data set used is 
Anderson’s IRIS data [18] that has been widely studied, allowing us to easily analyze and 
compare our new technique with existing methods. Finally, the fifth section contains a summary 
and conclusions. 

2. Proportional Learning Vector Quantization 
 As well known to all, LVQ is a clustering algorithm for organizing a large of unlabeled 
vectors into some given clusters. Although some good practical results have been obtained with 
it, the method still suffers from an initialization problem [19] and normalization problem [17]. 

Based on Hebb’s learning postulate, we assume that a desired learning rule for weights of 
LVQ network should satisfy the following differential equation in continuous space: 

  
d

dt
ui

t i i

m
x x m= −α ( )( )        (1a)  

or, in discrete domains, we have 

∆m x x mi t i iu= −α ( )( )          (1b)  

Where x  denotes the input vector, m i denotes the memory vector of neuron i. ui ( )x  represents 
the output value of neuron i when x  is presented in input layer. α α

t
t T= −( / )1  is referred to as 

temporal learning rate in [19]. To find the mathematical expression of ui ( )x  and its physical 
meaning, consider the following loss function L as introduced in [20]-[21] 
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Where u uik i k≡ ( )x  represents the degree to which input x k  ( x k k k kpx x x= ( , ,..., )1 2 ) matches 

memory vector m i  ( m i i i ipm m m= ( , ,..., )1 2 ). N is the number of data and c is the number of 

clusters. The number of clusters here is equal to the number of output layer neurons. p is the 
number of features, i.e., the number of input layer nodes. Using the method of the maximum-

fuzzy-entropy interpretation [21] and the normalization condition ( uik
i
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Where σ  is a nonzero number that can be chosen by user. Physically, σ  represents the fuzziness 
in clustering. The smaller σ  is, the less the fuzziness is. There is no theoretical basis for 
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choosing an optimal σ . A heuristic guideline is p25.0=σ  but not limited this. Note that 

p represents the number of features here. ui k( )x ∈[0, 1] is a fuzzy membership function. For a 

given σ , if the closer the input kx  is to the memory m i , then the closer the output ui k( )x  is to 

one; if the more the input kx  is away from the memory m i , then the closer the output ui k( )x  is 

to zero. From Eqns.(1b) and (3), it is clear that each input updates all the weights (i.e., memory 
connections { m i }) in proportion as their output values. Eqn.(1) was called fuzzy learning law 
(FLL) in [17], and ui k( )x  also can be called special learning rate corresponding with temporal 

learning rate tα . When 0→σ , ui k( )x ={0, 1}, and thus the FLL reduces to competitive learning 

law (CLL) [7]. The corresponding algorithm is referred to as proportional learning vector 
quantization (PLVQ). It has been shown that PLVQ avoids above two problems with LVQ. 

The PLVQ Algorithm: 
1). Fix 2 ≤ <<c n , ε > 0, σ >0 and the maximum number of iterations T. 
2). Initialize { )0(im } and learning rate α 0 0 1∈[ , ]. 

3). For t = 1, 2, ..., T; 
       For k = 1, 2, ..., N; 
 a. Calculate { ui k( )x } using Eqn.(3). 

 b. Update { )(tim } based on Eqn.(1b), i.e., 

  ))(()/1()1()( 0 ikkiii uTttt mxxmm −−+−= α   (4) 

 c. Next k. 

4). Calculate ∑∑
= =

−−=
c

i

p

j
ijij tmtmE

1 1

)1()( . 

5). IF E < ε  or t>T stop; ELSE next t. 

3. Feature-weighted Detector Networks 
 A feature-weighted detector (FWD) network is shown in Fig.1. The network consists of 
input (I), matching (M), detecting (D) and output (O) layers (Fig.1(b)). Below, we give a 
description of this network in detail. 
  
A. Input-output Relations 
 As shown in Fig.1(b), each M node can receive inputs from 2 sources: the left-right input; 
and right-left input from a node of D via a D-M adaptive connection. f() is a comparative 
function, and the output is the difference of two input values. In detecting layer, there are two 
types of node: forward and backward nodes. Each forward-node receives p inputs from p nodes 
of M via pathways with weight connections { wij }. g() is Gaussian functions. Each backward-

node receives an input from a node of O via a backward-pathway with 1 connection fixed. b() is 
a linear function. The functional of the output layer nodes is to give final classification score for 
each input by normalizing output values of all D nodes. Each O node receives c+1 inputs. One of 
them is called set signal. The other c are from D via c pathways with 1 connection fixed. Set 
signal occurs before input is presented to the input layer. The role of the set signal is to provide 
an equal opportunity to match the input for each of M nodes. Before input kx is coming, set 

signal 1=is , and thus 1== ii sv  ( ci ,...,2,1= ), since b() is a linear function. This guarantees 
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that each of neurons have an equal opportunity to match coming input. When input kx is coming, 

outputs of node of neuron i are: 

y x mij kj ji= −( ) , pj ,...,2,1=     (5) 

z w x mi ij kj ji
j

p

= − −
=

∑exp[ ( ) ]
1

2 2

2 2

1σ
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u z zi i j
j
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=
=

∑/
1
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B. Learning Laws 
 In feature-weighted detector (FWD) networks, there are two types of learning when input 
is presented to the input layer. One is memory learning. The other is weight learning. m i  
represents the memory of neuron i. Memory learning is unsupervised, and the updating rule is 
based on the FLL, i.e., 

∆m x x mi t i k k iu= −α ( )( )         (8) 

Where x k  represents the k-th input. On the other hand, in weight learning wij  represents the 

degree to which feature j contributes to the cluster i. In order to find the updating rule of { ijw }, 

introduce the following error function  

E u di k i
i

c

k

N

= −
==
∑∑1

2
2

11

( ( ) )x        (9) 

Where di  is the desired value of output layer node i. Therefore, unlike memory learning, weight 
learning is supervised. Based on the chain rule of differential calculus, using Eqns.(9), (7) and 
(6) the following updating rule is obtained: 
 

( )( ) ( )2

22
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Where ∑
=

=
c

i
izs

1

 and β >0 is learning rate. For the sake of understanding, designing 0 1≤ ≤wij  

for each i and j. wij = 0  means that feature j has no “contribution” to cluster i; and wij = 1 means 

that feature j has the most contribution to cluster i.   The algorithm can be stated as follows. 
 
Feature-weighted Detector (FWD) Network Algorithm 
1. Fix σ > 0 , α ∈[0, 1], β >0, ε > 0, and the maximum number of iterations T. 

2. Initialize { )0(im }, using c samples randomly chosen from { kx } (k=1, 2,..., N), and )0(ijw =1 

for each i and j. 
3. For t=1, 2,..., T; For k=1, 2,..., N 
 a. Calculate { iu } using Eqn.(7). 

 b. Update { )(tim } using Eqn.(8). 
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 c. Update { )(twij } using Eqn.(10). 

 d. Next k. 
4. Calculate E using Eqn.(9). 
5. IF E<ε , or t>T stop, ELSE next t. 
 
4. Applications 
 
 Two examples have been selected to illustrate the performance of our FWD network. The 
purpose of selecting Example 1 is to help us to intuitively understand the physical meaning of the 
method. From the result of Example 2, a potential application value of the presented method 
should be shown. 
 
Example 1--An artificial data set 
 
 For simplicity and intuition, we applied an artificial data set in which each pattern has 
two plausible features as showed in Fig. 2 to FWD. From the distribution of the data, it is clear 
that feature 1x  of this example has no contribution to the classification that follows the target 
outputs of Table 1. 
 For Data Set of Fig. 2, we run the FWD with ε =0.058, α =0.01, β =0.1 and σ =0.35. In 
this example, the number of input layer nodes is two (i.e., p=2), and the number of output layer 
nodes is two too (i.e., c=2). After 218 iterations, for each input the actual output is listed in the 
right two columns of Table 1. This classification is fuzzy. The item “target output” of Table 1 list 
the desired output when input k is presented to the input layer of the FWD. In the Table 1, iu  

represents the output of neuron i. One neuron corresponds to one cluster here. Each pattern 
should be assigned to either of two clusters in hard classification as shown in the item of “target 
output” of Table 1. Obviously, if transforming the actual output listed in the right two columns of 
Table 1 into 0-1 binary value, then the actual classification result of the FWD is identical with 
the target in this example. Preferably, after learning, the resulting weight connections of the 
FWD are =1w (0.10, 0.99), and =2w (0.15, 0.99). The contribution of feature 1x  to the cluster 1 

is 1.011 =w 0; the contribution of feature 1x  to the cluster 2 is 15.021 =w ; the contribution of 

feature 2x  to the cluster 1 is the same as that to the cluster 2, i.e., 99.02212 == ww . It shows that 

feature 1x  can be eliminated from the plausible features set selected initially since the degree of 

the importance of feature 1x  is much less than that of feature 2x . Therefore, the presented FWD 
enables the classification of pattern, and as well the selection of feature. 
 
Example 2--An application to IRIS data 

 IRIS data [18] has been used in many papers to illustrate various clustering methods [22], 
[23]. The motivation of selecting IRIS data here is since we have already known the typical 
performance of the existing methods applied to it and also we can analyze feature by means of 
the geometric structure as used in [10]. As well known, the IRIS data is a set of 150 four-
dimensional vectors. The plausible features selected initially include sepal length ( 1x ), sepal 

width ( 2x ), petal length ( 3x ) and petal width ( 4x ). The 150 IRIS data used come from three 
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subspecies (clusters): sestosa, versicolor, and virginica. Each subspecies owns 50 samples 
respectively. Anderson measured each feature of 150 plants (samples). For this data, using the 
existing methods the typical number of mistakes is around 5 for supervised classifiers, and 
around 15 for unsupervised classifiers [23]. 
 Shown in Table 2 are results of two experiments. In the first experiment (Experiment 1), 
all of four plausible features were used. The result is that: the number of mistakes, 5=e ; three 
weight vectors, =1w (1.00, 1.00, 0.95, 1.00), =2w (0.00, 0.00, 1.00, 1.00), and =3w (0.00, 0.00, 

0.82, 0.97). Based on this result, it has been clearly shown that, 1) feature 1x  and feature 2x  have 

no contribution to cluster 2s  and cluster 3s , and 2) the role of feature 1x  and feature 2x  in 

cluster 1s  also can be jointly played by feature 3x  and feature 4x . For this, feature 1x  and feature 

2x  is supposed being meaningless. In order to prove that, in the second experiment (Experiment 

2) only feature 3x  and feature 4x  were used. The results of the second experiment are 

demonstrated in the right column of Table 2: the number of mistakes of the second experiment is 
the same as that of the first experiment, i.e., 5=e ; three weight vectors are =1w (1.00, 1.00), 

=2w (1.00, 1.00), =3w (0.82, 0.97). Obviously, the use of two feature 3x  and feature 4x  results 

in virtually identical classifier performance. After feature selection, therefore, only feature 3x  

(petal length) and feature 4x  (petal width) are chosen. 

For the sake of description, above selected two feature variables are renamed: 1x  now 

represents petal length, and 2x  petal width. When a new input ),( 21 xx=x  is coming, using the 

obtained }{ ijw , }{ jim and given σ , based on Eqns.(6)-(7), we have the following: 

])(
2

1
exp[])(

2

1
exp[ 2

22
2

22
2

11
2

12 iiiii mxwmxwz −−×−−=
σσ

 

    )()( 21 21
xUxU

ii AA ×=                3,2,1=i   (11) 

∑
=

=
3

1
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2121
j

AAAAc xUxUxUxUu
jjiii
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Note that 1z , 2z  and 3z  are outputs that correspond respectively class sestosa ( 1c ), class 

versicolo (
2c ), and class virginica ( 3c ). Normalized )(x

icu  represents the degree to which input 

x  belongs to class ic  ( 3,2,1=i ). Further, we have 

 ])46.1(2exp[)( 2
1111

−−= xxU A ,      (13) 

 ])25.0(2exp[)( 2
2212

−−= xxU A ,      (14) 

 ])29.4(2exp[)( 2
1121

−−= xxU A ,      (15) 

 ])36.1(2exp[)( 2
2222

−−= xxU A ,      (16) 

 2
11 )54.5(34.1exp[)(

31
−−= xxU A ],      (17) 

 ])0.2(88.1exp[)( 2
2232

−−= xxU A .      (18) 

The following three fuzzy rules, which correspond respectively to i =1, 2, 3 in Eqn.(11), thus are 
constructed 

1R  IF petal-length is nearly 1.46 and petal-width is nearly 0.25, 
  THEN it is sestosa. 
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2R  IF petal-length is nearly 4.29 and petal-width is nearly 1.36, 
  THEN it is versicolor. 

3R  IF petal-length is nearly 5.54 and petal-width is nearly 2.00, 

  THEN it is virginica. 
Note that IF-part in above rules corresponds to the right side of Eqn.(11), and THEN-part the left 
side of Eqn.(11). Where, fuzzy numbers, nearly 1.46, nearly 0.25, nearly 4.29, nearly 1.36, 
nearly 5.54, and nearly 2.00 are respectively represented by fuzzy sets 11A , 12A , 21A , 22A , 31A , 

and 33A  in Eqn.(11). The numbers, 1.46, 0.25, 4.29, 1.36, 5.54, and 2.00 are derived from Eqns. 

(13)-(18). 
 
5. Conclusions 
 
 A fuzzy neural network that enables the classification of patterns and the selection of 
features is introduced. This algorithm includes two types of learning, i.e., unsupervised learning 
for memory connection and supervised learning for weight connection. Examples that are 
provided has demonstrated the ability of the feature-weighted detector (FWD) network to 
classify pattern and select feature. Moreover, distinct to traditional neural networks for which it 
is usually difficult to interpret the obtained knowledge [24], [26], our FWD provides 
interpretable rules that are of if-then form. These properties of the FWD suggest that it will be a 
promising method for pattern recognition. 
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   Fig. 1 (a) 
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   Fig. 1 (b) 
 
Fig. 1. (a) A schematic diagram of the FWD network model. (b) Structure and interconnection of 
neuron i. 
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Fig. 2. Data set of Example 1.  
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Table 1. Classification results of data set of Fig. 2. 
 

Data

k

1 (.05, .12)
2 (.10, .20)
3 (.15, .05)
4 (.20, .10)
5 (.20, .20)
6 (.70, .35)
7 (.75, .45 )
8 (.80, .40)
9 (.85, .50)
10 (.80, .10)
11 (.83, .15)
12 (.85, .19)
13 (.90, .07)
14 (.87, .13)

Target Outputs

 
1u  

2u

1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
0.00 1.00
0.00 1.00
0.00 1.00
0.00 1.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00

Outputs of Neurons

1u

15 (.10, .35) 0.00 1.00
16 (.15, .45) 0.00 1.00
17 (.20, .40) 0.00 1.00
18 (.25, .50) 0.00 1.00

0.989
0.901
0.998
0.993
0.899
0.118
0.008
0.033
0.002
0.993
0.974
0.925
0.997
0.985
0.122
0.008
0.032
0.002

2u

0.011
0.099
0.002
0.007
0.101
0.882
0.992
0.967
0.998
0.007
0.026
0.075
0.003
0.015
0.872
0.992
0.968
0.998

x
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Table 2. Experimental results for IRIS data set. Features 1x , 2x , 3x , and 4x  represent sepal 

length, sepal width, petal length, and petal width, respectively. e  represents the number of 
mistakes in classification, and { iw } represent weight vectors. 

 Experiment 1 
{ 1x , 2x , 3x , 4x } 

Experiment 2 
{ 3x , 4x } 

σ  0.50 0.50 
α  0.01 0.01 
β  0.10 0.10 
ε  
T  

2.00 
1000 

2.00 
1000 

e  5 5 

1w  (1.00, 1.00, 0.95, 1.00) (1.00, 1.00) 

2w  (0.00, 0.00, 1.00, 1.00) (1.00, 1.00) 

3w  (0.00, 0.00, 0.82, 0.97) (0.82, 0.97) 

 
 
 


